Graded maximal Cohen–Macaulay modules over noncommutative graded Gorenstein isolated singularities

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Equations over Noncommutative Graded Rings

We call a graded connected algebra R effectively coherent, if for every linear equation over R with homogeneous coefficients of degrees at most d, the degrees of generators of its module of solutions are bounded by some function D(d). For commutative polynomial rings, this property has been established by Hermann in 1926. We establish the same property for several classes of noncommutative alge...

متن کامل

Graded Specht Modules

Recently, the first two authors have defined a Z-grading on group algebras of symmetric groups and more generally on the cyclotomic Hecke algebras of type G(l, 1, d). In this paper we explain how to grade Specht modules over these algebras.

متن کامل

Graded Rings and Modules

1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...

متن کامل

Noncommutative Enumeration in Graded Posets

We define a noncommutative algebra of flag-enumeration functionals on graded posets and show it to be isomorphic to the free associative algebra on countably many generators. Restricted to Eulerian posets, this ring has a particularly appealing presentation with kernel generated by Euler relations. A consequence is that even on Eulerian posets, the algebra is free, with generators corresponding...

متن کامل

Poincaré Supersymmetry Representations Over Trace Class Noncommutative Graded Operator Algebras

We show that rigid supersymmetry theories in four dimensions can be extended to give supersymmetric trace (or generalized quantum) dynamics theories, in which the supersymmetry algebra is represented by the generalized Poisson bracket of trace supercharges, constructed from fields that form a trace class noncommutative graded operator algebra. In particular, supersymmetry theories can be turned...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2013

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2013.02.022